PHYSICAL REVIEW E 73, 011504 (2006)

Time scale for the onset of Fickian diffusion in supercooled liquids
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We propose a quantitative measure of a time scale on which Fickian diffusion sets in for supercooled liquids,
and we use Brownian dynamics computer simulations to determine the temperature dependence of this onset
time in a Lennard-Jones binary mixture. The time for the onset of Fickian diffusion ranges between 6.5 and 31
times the « relaxation time (the « relaxation time is the characteristic relaxation time of the incoherent
intermediate scattering function). The onset time increases faster with decreasing temperature than the a
relaxation time. Mean-squared displacement at the onset time increases with decreasing temperature.
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Understanding the origin of the extreme slowing down of
liquids” dynamics upon approaching the glass transition and
the nature of the transition itself has been of great interest for
several decades. A lot of recent activity has been stimulated
by the recognition that the liquids’ dynamics become not
only very sluggish, but also increasingly heterogeneous close
to the transition [1]. While the presence of dynamic hetero-
geneities is commonly accepted, the details of their spatial
and temporal structure have been only partially established.
In particular, the question of the lifetime of dynamic hetero-
geneities is quite controversial. Two separate experiments
[5,6] found that, near the glass transition, the lifetime is sig-
nificantly longer than the « relaxation time, but other experi-
mental studies [7-9] found the lifetime to be comparable to
the « relaxation time. In principle, the controversy can be
resolved by postulating that the temperature dependence of
the lifetime is stronger than that of the « relaxation time [2].
However, the physical interpretation of the new time scale
remains unclear. On the computational side, there have been
a few attempts to estimate the lifetime of dynamic heteroge-
neities. Most of them [10-13] found the lifetime to be com-
parable to the « relaxation time. To the best of our knowl-
edge, the only exception is a very recent paper [14] which
shows that, in a kinetically constrained spin model resem-
bling a fragile glass former, the lifetime is a few times longer
than the « relaxation time. More importantly, Ref. [14] found
that the lifetime increases with decreasing temperature some-
what faster than the « relaxation time. It should be noted that
one earlier study [15] also found that, at a low temperature,
the lifetime of dynamic heterogeneities is a few times longer
than the « relaxation time. However, a careful study of the
temperature dependence of these two times has not been per-
formed. Thus, the question of the existence of a time scale
longer and increasing faster than the « relaxation time re-
mains unresolved.

The goal of our study is to investigate the temperature
dependence of a characteristic time that is related to the life-
time of dynamic heterogeneities, the time for the onset of
long-time diffusive motion. More specifically, we will study
the time after which time dependence of the probability dis-
tribution of single-particle displacements can be described by
Fick’s law of diffusion [16]. We hereby refer to this charac-
teristic time as the onset time for Fickian diffusion. In addi-
tion, we will investigate the temperature dependence of the
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mean-squared displacement at the onset time, i.e., the dis-
tance over which the average particle has to move before it
starts Fickian diffusion.

In order to define the onset time, we use an indicator of
Fickian diffusion, which is the probability distribution of the
logarithm of single-particle displacements, log;o(dr), during
time #, P(log,o(8r) ;1) [17-20]. This distribution is defined in
such a way that the integral [ ﬁ(‘)P(x;t)dx is the fraction of
particles whose value of log;(dr) is between x, and x,. The
probability distribution P(log;y(5r);t) can be obtained from
the self-part of the van Hove correlation function [21],
P(log,(r);1)=In(10)475G (Sr,1). The probability distri-
bution P(log;o(5r);f) is a convenient indicator of Fickian
diffusion, because if particles move via Fickian diffusion,
then the self-part of the van Hove function is Gaussian and
the shape of the probability distribution P(log;(5r);¢) is in-
dependent of time. In particular, the height of the peak of this
distribution is equal to In(10)y54/me™3>~2.13, and devia-
tions from this value indicate non-Fickian particle motion.
We define the time for the onset of Fickian diffusion, 7, as
the time at which the peak of P(log;(dr);1) is equal to 90%
of its value for a Gaussian distribution of displacements,
P(10g(Ormay) s T7) = 1.92. The threshold value of 90% may
seem arbitrary at this point. We discuss this threshold value
and other indicators of Fickian diffusion at the end of this
paper.

It should be noted that a deviation of the probability dis-
tribution P(log;o(dr) ;1) from its universal shape expected for
Fickian diffusion indicates dynamic heterogeneity. However,
in principle, the inverse is not necessarily true. Thus, the
time for the onset of Fickian diffusion is probably only a
lower bound for the lifetime of dynamic heterogeneities.

To investigate the onset time, we use the trajectories gen-
erated by an extensive Brownian dynamics simulation of a
80:20 Lennard-Jones binary mixture introduced by Kob and
Andersen [22]. Briefly, the potential is given by V,g
=4e,4(0,5/r)'2=(0,5/7)°], where a,Be{A,B}, and €,
=1.0, €45=1.5, €55=0.5, 044=1.0, 045=0.8, and 0pz=0.88
(all the results are presented in reduced units where o4, and
€44 are the units of length and energy, respectively). A total
of N=1000 particles were simulated with a fixed cubic box
length of 9.4 (the details have been presented elsewhere
[20,23]). In the present investigation, we use only some of
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FIG. 1. The probability of the logarithm of single-particle dis-
placements P(log;o(5r);t) at T=0.45 for the A particles. The time ¢
is equal to, from left to right, 7,,=135, 7,=729, 7,,,=1550, 7,
=2841, and 77=22 391 (see text for definition of these times). For a
comparison, we also show, as a dotted line, P(log;((5r) ;1) resulting
from a Gaussian distribution of displacements.

the temperatures simulated before: 7=1.0, 0.9, 0.8, 0.6, 0.55,
0.5, 0.47, and 0.45 [24]. We present the results for the A
particles only. The results for the B particles are qualitatively
the same, although the statistics are worse due to the smaller
number of B particles. The temperature scale is expanded by
plotting various quantities versus 7—7,, where 7,.=0.435 is
the Kob-Andersen crossover temperature [20,22]. This is a
convenient way to expand the temperature scale, and it does
not imply an endorsement of any particular theoretical ap-
proach.

We start by showing in Fig. 1 the probability distributions
P(log(6r) ;1) at T=0.45 for the A particles at several times
characteristic of the relaxation of the system. The first one is
the time at which the non-Gaussian parameter a,(f)
=§<6r4)/ (6r*)*—1 reaches the maximum value, T,¢- The sec-
ond one is the « relaxation time, 7,, which is defined in the
usual way: 7, is the time at which the incoherent intermedi-
ate scattering function for a wave vector near the peak of the
static structure factor is equal to 1/e¢ of its initial time value,
Fy(k;7,)=1/e. The third one is the time at which a non-
Gaussian parameter (¢ =%(5r2)(1/5r2)—1 [20] reaches its
maximum value, 7,,,. It should be noted that, as we argued
before in Ref. [20], deviations of P(log;o(dr);t) from its
Fickian shape are most pronounced for times comparable to
Tung- Lhe fourth one is the time at which the incoherent in-
termediate scattering function for a wave vector near the
peak of the static structure factor is equal to 10% of its initial
time value, F(k;7,,)=0.1. The final one is the onset time,
Tp, 1.€., the time at which the peak of P(log;((dr);1) is equal
to the 90% of its value for a Gaussian distribution of dis-
placements. For comparison, we also show a P(log,o(6r) ;1)
resulting from a Gaussian distribution of displacements. It is
clear from Fig. 1 that at shorter times, i.e., at Tog> Tar Tangs
and 7, the probability distributions P(log,,(5r);t) deviate
strongly from the shape resulting from a Gaussian distribu-
tion of displacements. While there are still noticeable differ-
ences even at 7p, we believe that these are small enough to
consider 75 the onset time for Fickian diffusion.

In Fig. 2, we show P(log;(6r); 7r) for the A particles for
T=1.0, 0.8, 0.6, 0.55, 0.50, 0.47, and 0.45. It should be noted
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FIG. 2. Left panel: The probability of the logarithm of single-
particle displacements P(log;o(dr); ) for the A particles at T
=1.0, 0.8, 0.6, 0.55, 0.50, 0.47, and 0.45, listed from left to right.
Right panel: the probability distributions from the left panel shifted
in such a way that (6r?)=1; for a comparison we also show, as a
dotted line, P(log;(5r) ;1) resulting from a Gaussian distribution of
displacements with (6r?)=1.

that with decreasing temperature the probability distributions
at 7 shift toward larger displacements. In other words, the
mean-squared displacement at the onset of Fickian diffusion
increases with decreasing temperature. The right panel indi-
cates that the shape of P(log,y(6r);7F) is temperature-
independent, and, therefore, the liquid’s late-time dynamics
are similar up to a rescaling of the time and distance scales.

Figure 3 presents our main result: comparison of the tem-
perature dependence of the onset time for Fickian diffusion,
7, With that of the « relaxation time. We find that, in the
temperature range considered in this paper, the onset time is
between 6.57, and 317,. More importantly, the ratio of the
onset time and the « relaxation time grows with decreasing
temperature. Interestingly, the temperature dependence of
this ratio becomes somewhat weaker with decreasing tem-
perature, and it appears stronger in the range 0.1<7-T.
=< than in the lower temperature range 0.01<7-7,.<0.1.

In Fig. 4, we place the results shown in Figs. 1 and 3 in
the context of the time dependence of the mean-squared dis-
placement. On the time scale of 7,,, the mean-squared dis-
placement has not yet reached a linear dependence on time,
thus the diffusion is obviously non-Fickian. Moreover, on the
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FIG. 3. Temperature dependence of characteristic times for the
A particles. Diamonds: the « relaxation time, 7,. Circles: the onset
time for Fickian diffusion, 7. Inset: temperature dependence of the
ratio 75/ 7.
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FIG. 4. The time dependence of the mean-square displacement
for the A particles for 7=1.0, 0.8, 0.6, 0.55, 0.50, 0.47, and 0.45
listed from left to right. The symbols are placed at different char-
acteristic times. Squares: the time at which the standard non-
Gaussian parameter reaches the maximum value, 7,,. Triangles: the
a relaxation time, 7,. Circles: the onset time for Fickian diffusion,

TF.

time scale of 7, the mean-squared displacement is, at most,
at the borderline of the linear time dependence. On the other
hand, the onset time, 75, occurs well within the regime of
apparent linear time dependence of the mean-squared dis-
placement. Note that there is an important practical message
from Fig. 4: if one monitors only the time-dependent mean-
squared displacement, one can significantly underestimate
the length of the run necessary to achieve Fickian diffusion.

Having identified the onset time, 7, we can define a char-
acteristic length scale, the root-mean-squared displacement
at the onset time, [(5r*(7r))]"2, i.e., the distance over which
the average particle has to move before it starts Fickian dif-
fusion. It follows from Figs. 2 and 4 that this length increases
with decreasing temperature and reaches 2.7 particle diam-
eters at the lowest temperature. This is in contrast with the
common belief that translational motion in moderately super-
cooled liquids (i.e., in liquids that can be studied in computer
simulations) becomes Fickian after the particle has moved
about one diameter [2].

Our characteristic length should be related to a crossover
length " introduced by Schweizer and Saltzman via the
small wave-vector expansion of the memory function [25],
and by Berthier et al. on the basis of the analysis of kineti-
cally constrained models [26]. The latter length was defined
through the wave-vector dependence of the relaxation time
of a supercooled liquid. Roughly speaking, [” is the length
scale on which diffusion is Fickian on all time scales. Ac-
cording to Ref. [26], this length scale changes with tempera-
ture as the square root of the product of the self-diffusion
coefficient and the « relaxation time, {“«(D7,)"? [27]. In
Fig. 5, we compare the temperature dependence of
[(6r*(7r))]"? to that of I". (Note that we plot these length
scales versus the « relaxation time. This is in the spirit of
Refs. [26,28], where it is argued that the glass transition is a
manifestation of a zero-temperature critical point.) The root-
mean-squared displacement at the onset time grows with in-
creasing 7,, and at the lowest temperatures there is an appar-
ent scaling relationship, [(8r(74))]"?e< 7", In contrast,
(D7,)'"? is initially temperature-independent. This is due to
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FIG. 5. Circles (left vertical axis): the root-mean-squared dis-
placement at the onset time, [{8r2(75))]"/?. Triangles (left vertical
axis): the square root of the product of the self-diffusion coefficient
and the « relaxation time (multiplied by 20 for convenience),
20(D7,)"2. Squares (right vertical axis): the ratio of the onset time
and the « relaxation time, 75/ 7,. All quantities are plotted vs the «
relaxation time; all the data pertain to the A particles. Dashed lines
indicate the scaling relationships [(8r(7x))]"?ec 7" and 74/ 7,
D13
the fact that the Stokes-Einstein relation is violated only for
7,>1 (i.e., for T<0.8) [29]. However, at longer « relaxation
times (i.e., at lower temperatures), (D7,)"/? has a temperature
dependence similar to that of [(8r*(7))]"?. Finally, we show
in Fig. 5 that at longer a relaxation times (i.e., at lower
temperatures) the ratio 7/ 7, appears to grow with increas-
ing « relaxation time as 7g/ 7,% 7213. It is not clear whether
the scaling relations indicated in Fig. 5 have any deeper sig-
nificance. It could even be argued that if they continue for
another seven or eight orders of magnitude of 7, (i.e., up to
7, comparable to that at the laboratory glass transition tem-
perature), the resulting 7 would be greater than the longest
experimentally observed heterogeneity lifetime.

To summarize, we proposed a quantitative definition of
the onset time for Fickian diffusion and investigated its tem-
perature dependence in a Lennard-Jones binary mixture. We
found that the onset time is longer than the « relaxation time
and, more importantly, it increases faster with decreasing
temperature than the « relaxation time. Our definition of the
onset time, based on the relation P(log;o(Srmay); 7r) = 1.92,
seems reasonable in that it results in non-Fickian motion
being present only at temperatures at and below 7'= 1.0. This
temperature has been identified before as the so-called onset
temperature for slow dynamics [30]. To test the robustness of
our main result we tried using two other indicators of Fickian
diffusion. In one approach, we used the new non-Gaussian
parameter [20] and defined the onset time to be the time at
which the new non-Gaussian parameter is equal to % This
particular numerical value results in non-Fickian motion be-
ing present only at temperatures at and below 7=0.8 [31].
The resulting onset times are somewhat shorter than those
shown in Fig. 3. However, the temperature dependence of
the onset time defined using the new non-Gaussian param-
eter is similar to that of the onset time defined using
P(log;o(6r);t). In addition, we found that the shapes of
P(log,,(6r) ;1) at the onset times defined using the new non-
Gaussian parameter are very similar. In particular, the height
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of the peak is approximately temperature-independent and
equal to 85% of its value for Fickian diffusion. In an alter-
native approach, we used the standard non-Gaussian param-
eter a,(f) and defined the onset time using the threshold
value of 0.2. The resulting onset times are close to those
obtained from the new non-Gaussian parameter with a
slightly higher threshold value of % When the threshold
value used for the standard non-Gaussian parameter is low-
ered to 0.135, the onset times obtained approximately agree
with those obtained from the probability distribution
P(log(6r);1).

The results presented here call for a further simulational
investigation of dynamic heterogeneities on time scales
longer than the « relaxation time [32]. Also, it would be
interesting to use probability distributions of single-particle
displacements obtained in confocal microscopy investiga-

PHYSICAL REVIEW E 73, 011504 (2006)

tions of colloidal dynamics [33] to investigate the volume
fraction dependence of the Fickian diffusion onset time in
real colloidal systems.

Finally, we would like to point out that the results pre-
sented here violate the time-temperature superposition prin-
ciple. In order to superimpose the probability distributions
P(log,,(6r) ;1) shown in the left panel of Fig. 2, we have to
shift log,o(dr) by log,o[{5r*(7))]"/2. The typical shift proce-
dure, agreeing with the time-temperature superposition prin-
ciple, would involve the « relaxation time rather than the
onset time 7, which has a temperature dependence different
from 7,
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